IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 16, NO. 5, MAY 2019

821

Hessian-Regularized Multitask Dictionary Learning
for Remote Sensing Image Recognition

Guanhua Feng, Weifeng Liu

Abstract— Learning effective image representations is a vital
issue for remote sensing (RS) image recognition tasks. Although
numerous algorithms have been proposed, it is still challenging
due to the limited labeled data. One representative work is the
Laplacian-regularized multitask dictionary learning (LR-MTDL)
that employs graph Laplacian regularization terms to fully utilize
both the labeled and unlabeled information. However, it probably
conduces to poor extrapolating power because Laplacian regu-
larization biases the solution toward a constant function. In this
letter, we propose a Hessian-regularized multitask dictionary
learning to learn a source-data set-shared but target-data set-
biased representation for RS image recognition. Particularly,
Hessian can properly exploit the intrinsic local geometry of the
data manifold and finally leverage the performance. Extensive
experiments on four RS image data sets validate the effectiveness
of the proposed method by comparing with baseline algorithms
including single-task dictionary learning and LR-MTDL.

Index Terms— Hessian regularization, multitask dictionary
learning, remote sensing (RS) image recognition.

I. INTRODUCTION

NSPIRED by the rapid progress of satellite and remote

sensing (RS) technology, a huge quantity of RS images
has been available nowadays. These images always contain
sufficient information of space and spectra, which are of vital
significance for earth observation applications, such as object
detecting, traffic management, and urban planning. However,
due to various geometrical structures and intricate spatial
patterns, learning effective representations from RS data and
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realizing recognition is still a challenging task which has
attracted great attention in the RS field. For the sake of
recognizing and analyzing scenes from RS images, a volume
of scene classification algorithms has been introduced and
these algorithms can be divided into the following five cat-
egories: methods based on hand-craft features, methods based
on unsupervised feature learning, methods based on deep
learning, methods based on transfer learning, and methods
based on manifold learning.

A. Methods Based on Hand-Craft Features

Methods based on hand-craft features utilize various
hand-craft local image descriptors to represent images.
Dos Santos et al. [1] developed a considerable study to
explore several color and texture image descriptors including
color histogram [2] and local binary pattern [3] for RS
retrieval and classification. Sivic and Zisserman [4] proposed
the bag-of-visual-words (BOVW) model to represent images
with the frequency of visual words which are constructed by
quantizing local features with a clustering approach. After-
ward, several extensions of BOVW including the spatial
pyramid model (SPM) [5] and cooccurrences-based SPM
(SPM++) [6] were also introduced for recognizing the
scenes.

B. Methods Based on Unsupervised Feature Learning

Methods based on unsupervised feature learning aim to
automatically learn adaptive feature representations from
images. Cheriyadat [7] employed a sparse coding-based
method by encoding dense low-level feature descriptors in
terms of basic functions to establish holistic sparse rep-
resentation for aerial images. Luo er al. [8] proposed
a large margin multimodel multitask feature extraction
framework that is effective for learning strongly predic-
tive feature representation. Zhang et al. [9] used the
sparse autoencoder framework to extract the features of
image patches by exploiting the local structural and spatial
information.

C. Methods Based on Deep Learning

Methods based on deep learning try to adaptively learn
effective image features with a multistage global feature
learning architecture. Penatti et al. [10] directly extracted
deep features from pretrained CaffeNet into aerial scene
classification. Castelluccio et al. [11] used GoogLeNet with
fine-tuning on the target RS data set and achieved encour-
aging classification performance. Wang er al. [12] presented
a novel recurrent attention structure for hyperspectral image
classification by constructing an effective end-to-end network
based on it.
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D. Methods Based on Transfer Learning

Methods based on transfer learning take the advantage
of reusing knowledge or information from source data to
solve the classification problem in the related target data.
Matasci et al. [13] proposed a semisupervised transfer com-
ponent analysis for hyperspectral images, which statistically
aligns the target image to the source image through a nonlinear
transformation. Luo et al. [14] developed a heterogeneous mul-
titask metric learning framework to exploit high-order infor-
mation and obtain reliable feature transformations and metrics.

E. Methods Based on Manifold Learning

Methods based on manifold learning always seek a low-
dimensional subspace in which certain local geometric proper-
ties of the original features can be preserved. Wang et al. [15]
presented locality constraint criterion and structure preserving
method for hyperspectral image classification based on low-
rank representation. Luo er al. [16] introduced multiview
vector-valued manifold regularization to make use of the geo-
metric and structural information of features. Wang et al. [17]
took the manifold structure into consideration instead of rating
the similarities in the target space to properly assess the
hyperspectral data structure. Peng er al. [18] incorporated
a graph Laplacian regularization into unsupervised multitask
dictionary learning (LR-MTDL) framework which signifi-
cantly leverages the performance.

Although LR-MTDL has achieved cracking performance,
it has been proven that graph Laplacian biases the solution
toward a constant function and lacks extrapolating power [19].
In order to address these problems, we present a Hessian-
regularized multitask dictionary learning (HR-MTDL) in this
letter. In contrast to graph Laplacian, Hessian does not only
have a richer null space but also drive the solution varying
smoothly along the underlying manifold. Therefore, Hessian
regularization is better to encode the local geometry than
Laplacian regularization. We carefully implement HR-MTDL
for RS image classification and conduct experiments on the
AID data set, UC-Merced data set, WHU-RS19 data set,
and RSSCN7 data set. The experimental results verify the
effectiveness of the proposed method by comparing with
several baseline algorithms.

The rest of this letter is arranged as follows. Section II
briefly reviews some related work. Section III provides the pro-
posed HR-MTDL approach. Section IV describes the details
of the algorithm. Section V reports the experimental results.
Section VI concludes this letter.

II. RELATED WORK

In this section, we first give a brief review of several related
works of the proposed algorithm including dictionary learning
and LR-MTDL framework. Afterward, we introduce Hessian
regularization.

A. Dictionary Learning

Dictionary learning is a class of unsupervised methods
for learning sets of overcomplete bases to represent data
efficiently. Suppose we are given a set of training samples
X = [x1,x2,...,%x,] € Rdxn, Dictionary learning aims to
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learn a dictionary D € RY*k and the sparse code matrix
A = [a1,a2,...,a,] € R by solving the following
optimization problem:

n

min X — DA|} +2Q(A 1
Dep,aieRk; || I+ 292(4) M

where D £ {D e R”* Vi, |\dill, < 1}, |||l is the Frobe-
nius norm of matrix. Q(A) is the regularization term for
promoting the sparsity constraint and / is a positive parameter.
when {p-norm or {i-norm is employed as the regularization
term, the optimization problem can be effectively solved
with the K-singular value decomposition algorithm and online
dictionary learning methods, respectively.

B. Laplacian Regularized Multitask Dictionary Learning

Multitask dictionary learning incorporates multitask learn-
ing which belongs to an inductive transfer mechanism into
dictionary learning. In RS, one data set always includes
multiple sets of samples and each set is collected at a specific
geographic situation. Instead of building individual classifiers
for each sensing task, it is better to share data across tasks,
which means what is learned from one task is transferred to the
other correlated task. By learning the tasks in parallel under a
shared representation, the transfer of knowledge among tasks
is exploited to benefit all. This process works particularly well
in the situation when there are limited training data related
with each task. By taking advantage of data from associated
tasks, the training data from each task are strengthened and
the generalization ability of classifier enhanced. Assume we
are given a few tasks X = [X1, Xo,..., X,k = 1,--- K.
One of these tasks is the target task and the others are source
tasks. In the multitask dictionary learning model, it always
decomposes the dictionary that to be learned into two parts:
a shared dictionary that captures latent attributes between all
the tasks and a task-specific dictionary that captures unique
aspects of task. Based on these considerations, LR-MTDL
framework was developed. The formulation of this model is
expressed as follows:

[D¢, Di. DY, Di]
K ) 5
:argminZ,u(HXk—Dc i"F+"Xk_DCAi_D£ ZHF)
k=1
Xk — DA%}

+||Xk — DA% — D A%|[2
+]| Xk — DAY — D Al — Dy A% |2

K Ng 5
+n Y Y wiijllag; —af
k=1i,j=1
Ni
u u 2
+n Y wii ek — okl
ij=1

st ||ldflh <1, |ldea <1 [ldp) <1, Yiok @)

where D¢ denotes the task-shared dictionary, and D% and Dy
denote the task-specific dictionaries. Af, A%, and A} are the
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codes corresponding to them, df, di ;, and d; ; denote the
ith column of D¢, D%, and D} respectively, o’c,ﬁ,i and aj ;
represent the ith column of Aj and A%, respectively, and u
and # are the parameters of cost function terms. The last two
terms are regularization terms that can be rewritten in the form
of Laplacian matrix

Ni
> weijllag;

i,j=1

—af 1> = w(AgLeA) (3)

where Ly = Dy — Wy is known as the Laplacian matrix, and
Dy is a diagonal matrix in which diagonal elements are equal
to the sum of the row entries of Wj.

C. Hessian Regularization

Suppose M C R™ is a smooth data manifold, and the
tangent space Tx,(M) C R™ at each point X; € M can
be defined. By considering the tangent space as a subspace
of R”, we think of such tangent space Tx;,(M) C R™ an
orthonormal coordinate system by utilizing the inner product
inherited from R". Then, the Hessian of function f is defined
by evaluating Eells energy Sgeis(f) which is written for real-
valued function, f : M — R, as

Sees (1) = [ 19,550 poredV ) @

where V,V, is the second covariant derivative of f, dV (x)
is the volume element. Orthonormal coordinates at a given
point X; are coordinates on M such that the manifold looks
as Euclidean as possible (up to second order) around Xj;.
Therefore, in orthonormal coordinates x, centered at point X;

m
VuThlx, = Z i3 @ dx )
s=1 X& Xi
A Z ( ) = > fufyBg) (6
2\ 5 0n, o

where B(g = Zr =1 H,‘;L Hr(;)ﬁ H denotes the operator,
feRE £ = f(X;), X; € Ne(Xi). Ne(X;) denotes the set
of k nearest neighbors of point X;. Obviously, the norm of
the second covariant derivative is just the Frobenius norm of
the Hessian of f in orthonormal coordinates. Summing over
all data points, the final norm is formulated as follows:

SrmHess(f)—ZZ (a P >

i=1rs=1

_Z S S tufgBl)

i=1 aeNy(X;) PeN(X;)

= (f, Bf). )

2

Here, we call B Hessian matrix and the resulting function
Stess(f) Hessian regularization. It has been demonstrated in
[20] that Hessian regularization has a richer null space than
Laplacian regularization which the null space is the constant
functions on M.
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III. HESSIAN-REGULARIZED MULTITASK
DICTIONARY LEARNING

In this section, we introduce our proposed HR-MTDL.
Suppose we are given some tasks X = [X1, X2,..., X;],t =
1,---T,X, € RM <k is the feature matrix with each column
X;,; associating to an M-dimensional vector in the task ¢
which consists of N; samples. Task T is the target task and
the rest are source tasks. We simply divide our framework
into two halves. In the first halve, we aim for learning a
shared dictionary D¢ by using all the tasks and two task-
specific dictionaries Dy and Dj. The first dictionary D¢ is
used to encode the latent attributes shared by all the tasks.
The second dictionary D is unique to the target task 7. The
third dictionary Dj is a task-specific residual dictionary for
encoding the residual parts of features that cannot be captured

by D¢ or Dj. Thus, the first halve can be formulated as
follows:
L(X, D, A)

T

= 3y (% - DA + - Doag - DA )

=1

+[|X7 = DAT [

+|| X7 — D°AG — DAY

X7 = %5~ DfAF = Dy AT ®

The minimization of the first two reconstruction error terms
guarantees that D and D] can better encode X; and the
residual part of X;, respectively. The last three terms apply the
same reconstruction formulation into target task 7. The second
halve is the Hessian regularization which is formulated as
follows:

N 5
Z Ht,i,j”“tc,i - “tc,jH

ij=1

= tr(A{B,A}’) )

where H; ; ; is the weighted matrix that generates penalty and
B is the Hessian matrix. Obviously, the norm of the second
covariant derivative is just the Frobenius norm of the Hessian
of f in orthonormal coordinates. Summing up the energy of
all the points make sure that the squared norm of Hessian is
weighted with local density of the points, which leads to a
stronger penalization of Hessian in densely sampled regions.
Combining the above-mentioned two terms, HR-MTDL has
the following expression:

(D¢, D}, DY, ..., Dy]
T
= argmin ¥ _ y (|| X, — DCA¢|| 2+ | X, — D A~ D AT |2
t=1
+|| X7 — DAY
+||Xr — D°AG — DY A% ||
+||Xr — D°AS — D} A} — DR AT
N
+4>  w(ASBAY) + e (A4 Br AY)
ij=1
B <1 llatilly < 1l <1 viee a0
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where Af, A7, and A] are the learned sparse codes. df,
dy ;, and d;; denote the ith column of D¢, D%, and Dj,
respectively, and y and A are the positive parameters.

IV. ALGORITHM

In this section, we provide the details of optimization
procedure. First, we fix D¢, D%, D;, and A} to compute A{
and A%. Equation (10) can be rewritten as

min || X, — DA,||3 + Atr (A, Br A}) (11)

when t # T

X, = [uXe, p(X, = D} AT)]"

D = [uD, DT

A= [A" (12)
whent =T

X, = [Xr, X7, Xr — Dy AL]"

D = [p°0,D¢ D&, D¢ D¥]"

A = [AS, aL]". (13)

Then, we can obtain a;; which is the ith column of A, by
setting the derivative of (11) equals zero. Second, we fix other
terms to compute A;. When ¢ # T, we have to solve

min || X, — DAS — DI A% (14)
when t = T, we have to solve
min || X7 — DCAG — DY A% — Dy A% (15)

We can also obtain A] and A% by setting the derivative of
(14) and (15) equal to zero, respectively. Third, we update
dictionaries. Now, we are given A}, A%, A%, Dy, and Dj,
and D¢ is optimized as

min |X — DA% st ||df]3 < 1.

X = [uXy,...,uXr—1, u(Xy — DAY, ..., u(X7—1 —
Dy _(Ar_y),.... X7, Xr — DyAY — DrA,], and A =
[MAS, - wAG |, HAS, .. nAG_, AT, AT, A7), We can
get the updated D¢ by solving (16) by the Lagrange dual
method. Then, we fix D¢, D}, A%, A%, and Af, and DY
is optimized as

(16)

min ||} — DAY s laf <1 am

X = [Xr, X7 — DA%, X1 — DA — Dy A%] and Af =
[AT, A%, A%]. Finally, we fix D¢, Dy, A¢, A%, and A}, and
Dy is optimized as

min [ ~ {7 st 4=t as)

whent =T
X = Xr — D°AT — D} AL 19)

whent # T
X =X, — DAS. (20)

Then, we get D} and D] by solving (17) and (18) similarly
as (16).
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Fig. 1. Some instances from the AID data set. (Left to Right) Image label
is airport, bridge, farmland, parking, pond, river, and stadium.

V. EXPERIMENTS

To evaluate the performance of HR-MTDL, we conduct
experiments on the AID data set, UC-Merced data set,
WHU-RS19 data set, and RSSCN7 data set, which have been
popularly used for evaluating RS image recognition. We con-
sider learning the classification model for each data set as a
task. The AID data set consists of 10000 images of 30 classes,
and all the images have the same size of 600 x 600 pixels. The
UC-Merced data set contains 2100 images of 21 classes with
a fixed size of 600 x 600 pixels. The WHU-RS19 data set
includes 950 images of 19 classes, and all the images also
have the size of 600 x 600 pixels. The RSSCN7 data set
has 2800 images of seven classes, and each image has a size
of 400 x 400 pixels. Some samples of the AID data set are
shown in Fig. 1. We divide our experiments into two parts.
In the first part, we first choose one data set as the target
data set and the other three as the source data sets. Then,
the samples in the target data set are randomly separated into
two equal-size subsets. Finally, all the samples in the source
data sets and one subset of the target data set are labeled
to train model while the other subset is used for testing.
We use GIST feature as the image descriptor and compare
our proposed method HR-MTDL with single-task dictionary
learning (STDL) and LR-STDL. In the second part, we first
change the rate of training samples in the target data set.
Then, we get six different midlevel features by combining six
types of feature coding approaches (e.g., BOVW [4], improved
Fisher vector [21], locality-constrained linear coding [22],
latent Dirichlet allocation [23], SPM [5], and vector of locally
aggregated descriptors [24]) with local feature descriptor scale
invariant feature transform. Ultimately, we conduct six pairs of
contrast experiments by comparing our method with one of the
mentioned approaches based on the obtained feature. For all
the methods in our experiments, regularization parameters A
and 7 are turned from the candidate set {1x 107|i = —7,...7}.
y and u are tuned from the set {1 x 10'|i = —10,... — 1}.
The parameter k which is the number of neighbors in k-
nearest neighbors for computing Hessian is set to 30 in all
experiments. As for the size of dictionaries, we find that the
performance of the model has a different sensibility to dictio-
nary size in different target data sets. We consider D¢ and Dj
have the same size which is the half of D7. The performance
is measured by overall accuracy and confusion matrix.

Fig. 2 illustrates the average confusion matrix of two
algorithms when the AID data set is the target data set. From
the confusion matrix, we can see that HR-MTDL obtains
higher recognition accuracy than LR-MTDL in most classes.

Fig. 3 reveals the influence of dictionary size to the mean
recognition accuracy. The left and right, respectively, rep-
resent the classification performance of four methods when
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Fig. 2. Confusion matrix of HR-MTDL and LR-MTDL.
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Fig. 3. Recognition accuracy versus different dictionary size.
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Fig. 4. Classification results versus six pairs of contrast experiments under

different rates of labeled data in UC-Merced target data set.

RSSCN7 data set and WHU-RS data set are the target
data sets. The horizon axis shows the dictionary size, and
the vertical axis shows the mean average precision. In Fig. 3,
we can see that there is an upper trend of recognition accuracy
with the increase in dictionary size. When the size reaches 128,
recognition accuracy seems to be stable. Overall, the proposed
HR-MTDL achieves the best performance.

The recognition results of six pairs of contrast experiments
are shown in Fig. 4 in which we can see that our method
outperforms the compared approach in every pair of the
comparative experiment. It is obvious that the recognition
accuracy decreases with the reduction of training samples of
the target data set, but the less the training samples, the better
our method performs than the compared approach, which
reflects the effectiveness of source data sets, thus verify the
merits of our proposed method.

VI. CONCLUSION

In this letter, we incorporate Hessian regularization into
multitask dictionary learning and propose the HR-MTDL.
Hessian regularization has a richer null space than the graph
Laplacian, thus it is superior to graph Laplacian for modeling
the local geometry of compact support of the marginal distri-
bution. Extensive classification experiments on four RS image
data sets prove the effectiveness of our proposed method.
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